21st Century Technology:
Recycling Game Changers on the Horizon

Nathiel G. Egosi, P.E., President
June 22, 2016

RRT Design & Construction
Melville, NY- Milwaukee, WI- Baltimore, NY -Orlando, FL
Syracuse, NY- Vestal, NY- Philadelphia, PA-
www.rrtenviro.com
We build solid waste processing & recycling businesses
27 years of over 400 successful plants including over 80 complete greenfield operations
Experts in MRF plant operations, equipment, process engineering & construction

Ocean County, NJ
Single Stream MRF

New York, NY
Container & Paper MRF
What is the future?

- More Commingling
- More Materials
- Integration with Collection
- Automation
- Vertical Integration
- Private vs Public
- Economic Drivers
State of MRFs

- 600+
- 80/20 Rule
- Players
- Self-Driven
Core Issues

• Huge investments need to be spent/recovered
• Half of the people operating MRFs still lack confidence in the business
• 70% of our waste is unprocessed
• 50% of the waste processed is done poorly
• Relying on revenues to offsets costs confuses a fee based structure
• The PR of “zero waste” adds more confusion
Business Parameters

- Collection
- Processing
- Logistics
- Marketing
Business Parameters

Generator → Curb → Collect → Process → Ship → Market → End User
Business Parameters

Processing

- Throughput
- Recovery Rates/Residue Rates
- Staffing
- Maintenance
- Safety
- Material Grades & Quality
- System Availability
- Equipment Efficiency
MATURITY OF THE INDUSTRY

AGING OF THE PROCESS AND PROCESSING METHODS

INNOVATION
Business Parameters - Generator Trends

- Education - *Most places virtually non-existent*
- Mix Changes- *Less Fiber, Fiber Compositions, More Plastics, More non-recyclable plastics*
- Clean Loads/Dump & Bale- *shrinking opportunities*
Business Parameters - Generator
Business Parameters- Collection

- **Vehicle Types** - *transfer trailers, staging and yard tractors*
- **Automated** - *incoming contamination out of control*
- **Moisture** - *increasing issue for certain markets*
Business Parameters - Processing Trends

• **Throughput** - slowing down lines to improve quality/running more hours or running lines faster to “save money”.

• **Recovery Rates** - 90% was the standard, then 95% and now moved to 98.5%

• **Staffing** - adding labor to improve quality/cutting labor to save money.

• **Maintenance & Safety** - improving but the differences can be significant between plants
Business Parameters - Processing Trends (Systems)

- Complexity & Size - Fascination, justifications are weak
- Reliability - 85~90%, low
- Screens - Plateaued or declining
- Quality of Equipment - Unsubstantiated claims
- Access & Guarding - Greatly improved
- Environmental (Noise/Dust) - Significant work is needed
• **Effort to Market**- Increasing! Marketing demands more time such as deductions for quality and moisture

• **News**- will continue to be less available, ONP grade is gone

• **RMP**- Mixed paper grade is growing (hard or soft mix)

• **Prohibitives**- Waxed corrugated, wet strength, moisture, glass, non-fiber (plastics, metals, food), and FILM are growing problems

• **Cross Contamination of Products**- *Loss of $ most cases*
Business Parameters- Markets
How to make a bale look good
Business Parameters - Markets

Glass problems everywhere
Current Measures

• Plant audits and performance evaluations
• Moving toward a processing fee based model
• Shift away from sorting screens, modify what we have
• Re-balancing lines for the changes of the evolving ton
• Looking for better ways to deal with film
• Hub and spoke, transfer tons long distances
• Removal and simplification of equipment
• Removal and replacement with better equipment
• MRF closures and MRF stalls
Business Parameters

Generator → Curb → Collect → Process → Ship → Market → End User
Game Changers: The real examples

<table>
<thead>
<tr>
<th>Game Changer</th>
<th>Technology</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commingling Containers</td>
<td>Light-Heavy Separators (AirSort)</td>
<td>Collection</td>
</tr>
<tr>
<td>Automated Collection</td>
<td>Sideloaders</td>
<td>Collection</td>
</tr>
<tr>
<td>Batch Baling</td>
<td>Bale Doors</td>
<td>Processing</td>
</tr>
<tr>
<td>Automation</td>
<td>Eddy Current Separators</td>
<td>Processing</td>
</tr>
<tr>
<td>Automation</td>
<td>Optical Sorters</td>
<td>Processing</td>
</tr>
<tr>
<td>Single Stream</td>
<td>Paper Screens</td>
<td>Processing</td>
</tr>
<tr>
<td>RMP</td>
<td>OCC Screens</td>
<td>Processing</td>
</tr>
<tr>
<td>RMP</td>
<td>Mixed Paper Grade</td>
<td>Market</td>
</tr>
<tr>
<td>Metering</td>
<td>Drum Feeder</td>
<td>Processing</td>
</tr>
</tbody>
</table>
A Quick Look Back in Time & Game Changers
An elevated sort System
The AirSort™
A Quick Look Back in Time & Game Changers
Optical Sorting (glass, plastic & paper)
A Quick Look Back in Time & Game Changers
Single Stream Paper Screen
Single Stream Paper Screen 1997
How we see the MRF trend...
Batch Baling
Eddy Current Separator
Life Before Metering Drums
Game Changers at MRF that didn’t take (examples)

<table>
<thead>
<tr>
<th>Game Changer</th>
<th>Technology</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrous Containers</td>
<td>Shredders/Delabelers</td>
<td>Markets</td>
</tr>
<tr>
<td>Glass Color Sorting</td>
<td>Optical Sorters-Glass</td>
<td>Markets</td>
</tr>
<tr>
<td>Plastic Direct to Market</td>
<td>Granulators-Plastic</td>
<td>Markets</td>
</tr>
<tr>
<td>Bagging Recyclables at Curb</td>
<td>Debagger</td>
<td>Collection</td>
</tr>
<tr>
<td>Plastic Densification</td>
<td>Perforators</td>
<td>Shipping</td>
</tr>
<tr>
<td>Adding Textiles</td>
<td>Manual Sort</td>
<td>Processing</td>
</tr>
<tr>
<td>Adding Wood</td>
<td>Manual Sort</td>
<td>Processing</td>
</tr>
</tbody>
</table>
What is the future?

- More Commingling
- More Materials
- Integration with Collection
- Automation
- Vertical Integration
- Private vs Public
- Economic Drivers
Thoughts

• Huge investments need to be spent
• Half of the people operating MRFs still lack confidence in the business
• 70% of our waste is unprocessed
• 50% of the waste processed is done poorly
Game Changers!

- Robotics - Processing
- Screens - Processing
- Mixed Waste Processing - Collection
Robotics in Recycling

• **Who:** 4 companies so far
• **What:** QC Sorting
• **Where:** At end of the lines
• **When:** Next 5-10 years
• **Why:** Improve processing
Robotics Technology
Basic Principles

- Shape
- Height
- Material Type
- Color
- Orientation
- Location
Robotics Technology

• Unit based (just like manual) so TPH claims are not an accurate measurement
• Capital intensive with results cost neutral?
• Complicated
• Not ready for prime time yet, but getting there
• A good commodity run will drive this game changer so long as MRFs can simultaneously increase throughput
SADAKO Technologies
Wall-B

- Barcelona, Spain based company founded in 2012
- Wall-B model – arm suspended robot with suction tool
- Suitable for low to mid flow rates of waste: 1 – 2.75 TPH
- Technology intended to complement optical and manual sorters
- 20 picks/minute
PARTS
1. Camera box
2. Robotic Arm
3. Gasping tool (suction)
4. Artificial Intelligence to make everything work (not seen in the diagram)
- **2 units in use** at MRFs in Barcelona area
- Unit no. 3 to be installed during 2016
- Currently separates only PET
AMP Robotics

- Boulder, CO startup founded in 2015
- Delta and SCARA robots – robotic arms which can work with suction tools or grippers
- SCARA (suction): 50 picks/minute
- Delta (gripper): 80 picks/minute
- Recognizes and separates: cardboard, brick, wood, PET, HDPE and cartons
- Grippers customized for different materials and interchangeable
AMP Robotics

SCARA

Delta
AMP Robotics

• Suction uses up to 30 CFM of compressed air during one pick (15 CFM average)
• Maximum weight the robot can lift: 13 lbs. (below 6 lbs. optimum)
• SCARA belt speed: 80 feet/minute
• Delta belt speed: 200 feet/minute
• 1 pilot unit in the US installed in 2016
ZenRobotics

- Helsinki, Finland, founded 2007
- ZenRobotics Recycler – **two robotic arms** suspended above a conveyor belt
- ZRR uses a **gripper** to pick up and then toss material into chutes
- Each robot 2000 picks/hour (approx. 33 picks/minute) up to 11 lbs. Maximum weight lifted is 44 lbs.
- Purchase price: **$1M** (2 robotic arms + sensor enclosure + control system)
Bollegraaf Recycling Solutions

- Appingedam, Netherlands based company
- Represented by VAN DYK Recycling Solutions
- RoBB – detection module, sorting module and conveyor belt
- **Laser-guided system** to detect the height of waste and **suction** tool
- One robot: **4,000 picks/hour** (approx. **66 picks/minute**)
- Typical installation comes with **four robot arms (12,000 picks/hour)**
- Purchase price: **$1M** (2 robotic arms + sensor enclosure + control system)
Bollegraaf Recycling Solutions
Bollegraaf Recycling Solutions

Few units installed in Europe
Robotic technologies at MRFs (today)

<table>
<thead>
<tr>
<th>Company</th>
<th>SADAKO</th>
<th>AMP Robotics</th>
<th>Zen Robotics</th>
<th>Bollegraaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Suction</td>
<td>Suction/Gripper</td>
<td>Gripper</td>
<td>Suction</td>
</tr>
<tr>
<td>Picks/min per robot</td>
<td>20</td>
<td>50/80</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Type of waste</td>
<td>PET</td>
<td>C&D, Rigid Plastics, Plastic Containers, Paper</td>
<td>C&D, Rigid Plastics</td>
<td>Plastics Containers & Paper</td>
</tr>
<tr>
<td># of Installations</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Cost (packaged as 2 robots)</td>
<td>Unknown</td>
<td>NA</td>
<td>$ 1 million</td>
<td>$ 1 million</td>
</tr>
</tbody>
</table>

Cost excludes installation and “balance of plant”
Robotics Summary

- Model is following the route of optical
- Sort speed per robot matches human; 50% of the time not sorting
- Well suited for quality control after optical sorting
- Higher purity results than optical
- Grippers and suction prone to wear and tear
- Expectation: We will see these as soon as low commodity prices break
Robotics Applications

• PET QC Sorter
• HDPE QC Sorter
• PP Sorter
• Aseptic Sorter
• OCC Sorter on Fiber Line
• Last chance sorter on residue line
Screens
Getting Rid of Screens

- Safety
- Downtime
- Parts Costs
- Dust
- Efficiencies Remain Low
- Throughput has Improved
- News is declining
Screen Alternatives?

- Reduce angle to horizontal - less agitation, size driven
- Ballistic Separators
- Make one paper grade
- Optical Sorters
Ballistic Separators: Early Applications

• Brini System- 1994
• Bezner- Inclined Sorting Machine 1996
• KWS- circa 1998
• Stadler- SIMS/Hugo Neu 2010
Simple Inclined Belt

Feed

Non-flat fraction

Flat fraction
Advanced Inclined Belt

Feed

Flat material discharge

Motion of belt

Rolling material discharge

Angle of incline β
City of Phoenix
Ballistic Separators-Today
Ballistic Separators-Today

Individual “Paddles” or “Slats”
Eccentric-crankshaft
Substantial agitation
Includes screening capability
Ballistic Separators-Today

- Can be stacked
- Can be angle adjusted
- NO WRAPPING
- NO DUST
- Throughput limitations
Vendors

- Hartner (BRT/Eggersmann) - Germany
- Komptech - Austria
- Machinex - Canada
- McLanahan - Pennsylvania
- Parini - Italy
- Stadler - Germany
Hartner/Metaltech
McLanahan
Ballistic Separator - Features

- Angle Adjustment
- Fans
- Covers
- Stacking
- 3 sorts
- Screening sizes of 2 inches to 4 inches.
- Widths of 5 ft. to 17 ft.
- Different paddle styles, widths and numbers
Call it a ‘dirty MRF’ or not, a single-bin system can work
Mixed Waste MRF Defined (aka “Dirty MRF”)

- Processes municipal solid waste to recover recyclables
- Uses similar equipment, processes & techniques as single-stream
- Includes special equipment unique to dealing with garbage
- Liberates, rough separation by shape and size & then more precise separation into target commodity materials
- Offers opportunity for organics recovery & alternative energy
The Need for a Business Case (1)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Mixed Waste</th>
<th>MRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Non-recyclables after processing</td>
<td>80-90%</td>
<td>10-20%</td>
</tr>
<tr>
<td>% Recyclables recovery</td>
<td>80-90%</td>
<td>95-98%</td>
</tr>
<tr>
<td>Recyclables from market area</td>
<td>95+%</td>
<td>25-50%</td>
</tr>
<tr>
<td>Sizing of plant (residential only)</td>
<td>3-4x</td>
<td>x</td>
</tr>
</tbody>
</table>
The Need for a Business Case (2)

The math at this time is complicated, unsupported, political & volatile

- Data is not real
- Variables from location to location is high, no standard
- This is really about garbage, not recycling. Garbage is about $
- Tipping fees & economy affect flow, commodity prices affect everything

We are years away from knowing the costs....think back to MRFs & how long it took to understand those costs...
On the Other Hand...

Mixed waste processing vs. landfill is a compelling debate

<table>
<thead>
<tr>
<th></th>
<th>Landfill</th>
<th>Mixed Waste Diversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Recyclables recovered</td>
<td>0</td>
<td>10%</td>
</tr>
<tr>
<td>% Organics recovered for further</td>
<td>0</td>
<td>25-35%</td>
</tr>
<tr>
<td>processing into biogas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Materials recovered for further</td>
<td>0</td>
<td>45-55%</td>
</tr>
<tr>
<td>processing into RDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaining work</td>
<td>Minimal</td>
<td>Need:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- AD plant with answers for digestate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- RDF plant with combustion component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Landfill for residues</td>
</tr>
</tbody>
</table>
Concluding MWP Comments

- MWP is a high-value proposition for multi-family streams & rural communities

- MWP should not be thought of an alternative but rather as an incremental & complimentary tool for traditional source-separation, curbside recycling

- Be prepared: arguments about this subject often have little to do with recycling but rather with other institutional factors and of course, $

- MWP is effective in producing a variety of rich streams suitable as inputs to other processes; contaminated organics, mixed plastics & a refuse derived fuel (RDF)

- Create Realistic recycling goals

- Focus should be on MRF contamination levels
The MRF of Tomorrow
Technology Game Changers!

MRFs

— Ballistic Separators on Single Stream
— Optical Sorters on Fiber
— Robotics for containers complimenting Optical

Mixed Waste Processing MRFS

— Organics for Energy Recovery & Treatment
— Alternative Materials for Energy Recovery & Treatment